UTF-8" /> Исследование функции с квадратичной функцией в числителе и линейной в знаменателе | Уроки математики

Исследование функции с квадратичной функцией в числителе и линейной в знаменателе

Исследуем функцию, заданную формулой:

Область определения:

Данная функция определена для:

Переносим известные величины в правую часть неравенства c противоположным знаком.

Полученное решение отметим на рисунке.

Ответ:

Первая производная:

Воспользуемся формулой производной частного.

Раскрываем скобки.

Вторая производная:

Вторая производная это производная от первой производной.

Воспользуемся формулой производной частного.

Воспользуемся свойством степеней.

Воспользуемся правилом нахождения производной для сложной функции.

Раскрываем скобки.

Выносим общий множитель.

Воспользуемся свойством степеней.

Точки пересечения с осью
: нет

Для нахождения точек пересечения с осью абсцисс приравняем функцию к нулю.

Дробь обращается в нуль тогда, когда числитель равен нулю.

Находим дискриминант.

Дискриминант отрицателен, значит уравнение не имеет корней.

Ответ: нет решений.

Точки пересечения с осью
:

Пусть

Вертикальные асимптоты:

Определим значения аргумента, при которых знаменатель функции обращается в ноль

Перенесем известные величины в правую часть уравнения.

Горизонтальные асимптоты: нет .

Наклонные асимптоты:
.

Для нахождения наклонных асимптот преобразуем исходное выражение.

Раскрываем скобки.

Предел разности исходной функции и функции
на бесконечности равен нулю.

Критические точки:

Для нахождения критических точек приравняем первую производную к нулю и решим полученное уравнение.

Дробь обращается в нуль тогда, когда числитель равен нулю.

Находим дискриминант.

Дискриминант положителен, значит уравнение имеет два корня.

Воспользуемся формулой корней квадратного уравнения.

Ответ:
.

Возможные точки перегиба: нет

Для нахождения возможных точек перегиба приравняем вторую производную к нулю и решим полученное уравнение.

Ответ: нет решений.

Точки разрыва:

Симметрия относительно оси ординат: нет

Функция f(x) называется четной, если f(-x)f(x).

Выносим знак минус из произведения.

Выносим знак минус из произведения.

Приводим дроби к общему знаменателю.

Производим сложение дробей с одинаковыми знаменателями.

Раскрываем скобки.

Изменяем порядок действий.

Приводим подобные члены.

Раскрываем скобки.

Приводим подобные члены.

Разложим числитель дроби на множители.

Симметрия относительно начала координат: нет

Функция f(x) называется нечетной, если f(-x)-f(x).

Выносим знак минус из произведения.

Выносим знак минус из произведения.

Приводим дроби к общему знаменателю.

Производим сложение дробей с одинаковыми знаменателями.

Раскрываем скобки.

Изменяем порядок действий.

Приводим подобные члены.

Раскрываем скобки.

Приводим подобные члены.

Выносим знак минус из произведения.

Разложим числитель дроби на множители.

Тестовые интервалы:

Результаты исследования функции занесем в таблицу. Относительные экстремумы:

Проходя через точку минимума, производная функции меняет знак с (-) на (+).

Относительный минимум
.

Проходя через точку максимума. производная функции меняет знак с (+) на (-).

Относительный максимум
.

Данные таблицы нанесем на координатную плоскость.

Используя результаты исследования функции, построим ее график.

Множество значений функции:

Наименьшее значение: нет

Наибольшее значение: нет

При решении задач по математике необходимо пользоваться не только нашей литературой, но и англоязычной.