Каталог примеров

Решение биквадратного уравнения методом замены переменной

Если при проведении вам попадется биквадратное уравнение, то наверняка нужно будет провести замену переменной

Решение биквадратного уравнения

Отметим ОДЗ.

Произведем замену переменных.

Пусть

В результате замены переменных получаем вспомогательное уравнение.

Приводим дроби к общему знаменателю.

Производим сложение дробей с одинаковыми знаменателями.

Раскрываем скобки.

Дробь обращается в нуль тогда, когда числитель равен нулю.

Находим дискриминант.

Дискриминант положителен, значит уравнение имеет два корня.

Воспользуемся формулой корней квадратного уравнения.

Ответ вспомогательного уравнения: .

В этом случае исходное уравнение сводится к уравнению

Теперь решение исходного уравнения разбивается на отдельные случаи.

Случай .

Перенесем все в левую часть.

Приводим дроби к общему знаменателю.

Производим сложение дробей с одинаковыми знаменателями.

Раскрываем скобки.

Приводим подобные члены.

Изменяем порядок действий.

На тестах по математике следует помнить, что дробь обращается в нуль тогда, когда числитель равен нулю.

Находим дискриминант.

Дискриминант положителен, значит уравнение имеет два корня.

Воспользуемся формулой корней квадратного уравнения.

Итак,ответ этого случая: .

Случай .

Перенесем все в левую часть.

Приводим дроби к общему знаменателю.

Производим сложение дробей с одинаковыми знаменателями.

Раскрываем скобки.

Приводим подобные члены.

Изменяем порядок действий.

Дробь обращается в нуль тогда, когда числитель равен нулю.

Находим дискриминант.

Дискриминант положителен, значит уравнение имеет два корня.

Воспользуемся формулой корней квадратного уравнения.

Итак,ответ этого случая:

.

Ответ этого уравнения:

.

Произведем проверку ОДЗ.

удовлетворяет ОДЗ.

удовлетворяет ОДЗ.

удовлетворяет ОДЗ.

удовлетворяет ОДЗ.

Окончательный ответ:

.