Исследование функции десятой степени

Исследуем функцию, заданную формулой:

Область определения: множество всех действительных чисел

Первая производная:

Производная суммы равна сумме производных.

Производная произведения константы и функции равна произведению константы на производную функции.

Воспользуемся правилом производной степени .

Воспользуемся правилом производной степени .

Раскрываем скобки.

Производим группировку.

Вторая производная:

Вторая производная это производная от первой производной.

Производная суммы равна сумме производных.

Производная произведения константы и функции равна произведению константы на производную функции.

Воспользуемся правилом производной степени .

Раскрываем скобки.

Производим группировку.

Точки пересечения с осью
:

Для нахождения точек пересечения с осью абсцисс приравняем функцию к нулю.

Изменим знаки выражений на противоположные.

Решаем уравнение методом разложения на множители.

Выносим общий множитель.

Теперь решение исходного уравнения разбивается на отдельные случаи.

Случай
.

Итак,ответ этого случая:
.

Случай
.

Находим дискриминант.Формулу для дискриминанта используем стандартную

Дискриминант положителен, значит уравнение имеет два корня.

Воспользуемся формулой корней квадратного уравнения.

Итак,ответ этого случая:
.

Ответ:
.

Точки пересечения с осью
:

Пусть

Вертикальные асимптоты: нет

Горизонтальные асимптоты: нет .

Наклонные асимптоты: нет .

стремится к бесконечности при
стремящемся к бесконечности.

стремится к бесконечности при
стремящемся к бесконечности.

Критические точки:

Для нахождения критических точек приравняем первую производную к нулю и решим полученное уравнение.

Изменим знаки выражений на противоположные.

Следующее уравнение равносильно предыдущему.

Решаем уравнение методом разложения на множители.

Выносим общий множитель.

Теперь решение исходного уравнения разбивается на отдельные случаи.

Случай
.

Итак,ответ этого случая:
.

Случай
.

Находим дискриминант.

Дискриминант положителен, значит уравнение имеет два корня.

Воспользуемся формулой корней квадратного уравнения.

Итак,ответ этого случая:

.

Возможные точки перегиба:

Для нахождения возможных точек перегиба приравняем вторую производную к нулю и решим полученное уравнение.

Изменим знаки выражений на противоположные.

Следующее уравнение равносильно предыдущему.

Решаем уравнение методом разложения на множители.

Выносим общий множитель.

Теперь решение исходного уравнения разбивается на отдельные случаи.

Случай 1

Итак,ответ этого случая:
.

Случай 2

Находим дискриминант.

Дискриминант положителен, значит уравнение имеет два корня.

Воспользуемся формулой корней квадратного уравнения.

Итак,ответ этого случая:

.

Точки разрыва: нет

Симметрия относительно оси ординат: нет

Функция f(x) называется четной, если f(-x)f(x).

Раскрываем скобки. Приводим подобные члены.

Симметрия относительно начала координат: нет

Функция f(x) называется нечетной, если f(-x)-f(x).

Выносим знак минус из произведения.

Приводим подобные члены.

Относительный минимум в точке (0,0).

Проходя через точку максимума. производная функции меняет знак с (+) на (-).

Используя результаты исследования функции, построим ее график.