UTF-8" /> Репетитор по математике | физике | программированию | в Харькове

Архив рубрики «Начала анализа»

Исследование функции с линейной функцией в числителе и знаменателе

Исследуем функцию, заданную формулой:

Область определения:

Данная функция определена для:

Переносим известные величины в правую часть неравенства c противоположным знаком.

При делении неравенства на положительное число знак неравенства не меняется.

Полученное решение отметим на рисунке.

Ответ:
.

Первая производная:

Воспользуемся формулой производной частного.

Выносим знак минус из произведения.

Вторая производная:

Вторая производная это производная от первой производной.

Производная произведения константы и функции равна произведению константы на производную функции.

Производная произведения константы и функции равна произведению константы на производную функции.

Воспользуемся формулой производной частного.

Воспользуемся свойством степеней.

Воспользуемся правилом нахождения производной для сложной функции.

Выносим знак минус из произведения.

Воспользуемся свойством степеней.

Точки пересечения с осью
:

Для нахождения точек пересечения с осью абсцисс приравняем функцию к нулю.

Дробь обращается в нуль тогда, когда числитель равен нулю.

Перенесем известные величины в правую часть уравнения.

Разделим левую и правую часть уравнения на коэффициент при неизвестном.

Ответ:

.

Точки пересечения с осью
:

Пусть

Вертикальные асимптоты:

Для нахождения вертикальных асимтот упростим выражение.

Разложим числитель дроби на множители.

Определим значения аргумента, при которых знаменатель функции обращается в ноль

Перенесем известные величины в правую часть уравнения.

Разделим левую и правую часть уравнения на коэффициент при неизвестном.

Горизонтальные асимптоты:
 .

Наклонные асимптоты: нет .

Для нахождения горизонтальных асимптот преобразуем исходное выражение.

Разложим числитель дроби на множители.

Предел данной функции на бесконечности равен числу
.

Критические точки: нет

Для нахождения критических точек приравняем первую производную к нулю и решим полученное уравнение.

Изменим знаки выражений на противоположные.

Ответ: нет решений.

Возможные точки перегиба: нет

Для нахождения возможных точек перегиба приравняем вторую производную к нулю и решим полученное уравнение.

Ответ: нет решений.

Точки разрыва:

Симметрия относительно оси ординат: нет

Функция f(x) называется четной, если f(-x)f(x).

Выносим знак минус из произведения.

Приводим дроби к общему знаменателю.

Производим сложение дробей с одинаковыми знаменателями.

Раскрываем скобки.

Приводим подобные члены.

Изменяем порядок действий.

Раскрываем скобки.

Симметрия относительно начала координат: нет

Функция f(x) называется нечетной, если f(-x)-f(x).

Выносим знак минус из произведения.

Выносим знак минус из произведения.

Приводим дроби к общему знаменателю.

Производим сложение дробей с одинаковыми знаменателями.

Раскрываем скобки.

Приводим подобные члены.

Изменяем порядок действий.

Раскрываем скобки.

Приводим подобные члены.

Разложим числитель дроби на множители.

Тестовые интервалы:

Относительные экстремумы: нет

Данные таблицы нанесем на координатную плоскость.

Используя результаты исследования функции, построим ее график.

Множество значений функции:

Наименьшее значение: нет

Наибольшее значение: нет