Решить неравенство онлайн, содержащее произведение многочленов
Тесты по математике. Решить неравенство онлайн

Если мы сдаем тесты по математике, то решаем неравенство методом интервалов.
Решаем вспомогательное уравнение.
Уравнение 1

Изменяем порядок действий.

Раскрываем скобки.

При сдаче тестов по математике такое неравенство решаем онлайн, произведя замену переменных.
Пусть

В результате замены переменных получаем вспомогательное уравнение.

Раскрываем скобки.

Раскрываем скобки.

Находим дискриминант.

Дискриминант положителен, значит уравнение имеет два корня.
Воспользуемся формулой корней квадратного уравнения.

Ответ вспомогательного уравнения:

В этом случае исходное уравнение сводится к уравнению

Теперь решение исходного уравнения разбивается на отдельные случаи.
Случай 1.1.

Перенесем все в левую часть.

Находим дискриминант.

Дискриминант положителен, значит уравнение имеет два корня.
Воспользуемся формулой корней квадратного уравнения.

Итак, ответ этого случая:

.
Случай 1.2

Перенесем все в левую часть.

Находим дискриминант.

Дискриминант положителен, значит уравнение имеет два корня.
Воспользуемся формулой корней квадратного уравнения.

Итак, ответ этого случая:

.
Ответ этого уравнения:

.
Отметим найденные критические точки и соответствующие им интервалы на числовой прямой.

Расчет знаков.
Случай 1

.
Пусть

Итак, этот случай удовлетворяет неравенству.
Случай 2 :

.
Пусть

Итак, этот случай не удовлетворяет неравенству.
Случай 3:

.
Пусть

Итак, этот случай удовлетворяет неравенству.
Случай 4 :

.
Пусть

Итак, этот случай не удовлетворяет неравенству.
Случай 5:

.
Пусть

Итак, этот случай удовлетворяет неравенству.
Числа

удовлетворяют неравенству.
Полученное решение отметим на рисунке.

Окончательный ответ:

.